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Abstract-Coupled buoyant and thermocapillary instabilities in a fluid layer of infinite horizontal extent 
bounded below by a rigid plane and above by a free flat surpdce and submitted to a temperature gradient 
are investigated. A general 3D mathematical formulation is used to determine the linearized perturbated 
equations of the steady state induced by the temperature gradient. Numerical results are obtained in the 
case of a horizontal temperature gradient, lower and upper surfaces are adiabatically isolated and the 
range of variation of the Prandtl number is selected as [IO-‘, IO]. The presence of travelling rolls is 
exhibited. The results display three kinds of behaviour according to the values taken by the Prandtl 

number: (a) 4 x IO-’ < Pr < 0.4, (b) 0.4 < Pr < 2.6 and (c) Pr > 2.6. 

1. INTRODUCTION 

COUPLED effects of buoyancy and thermocapillarity 
in an infinite horizontal layer of fluid submitted to 
a temperature gradient are studied. This problem is 
generally referred to as the BCnard-Marangoni prob- 
lem. The imposed temperature gradient can take two 
privileged directions: either a pure vertical one or a 
pure horizontal one. Nield [I] was the first to deter- 
mine the instability thresholds in the case of a qui- 
escent fluid of horizontal infinite extent, subjected 
to a vertical temperature gradient. The presence of 
a horizontal temperature gradient raises several 
additional difficulties. First, the rest state is not the 
solution of the balance equations and therefore a pre- 
liminary study must be realized to determine the basic 
temperature and velocity profiles [2]. The usual linear 
perturbation techniques can then be used to find the 
thresholds of the first instability mode. The second 
difficulty, the theorem ofexchange of stability, has not 
been proved for a horizontal temperature gradient: 
experimental and numerical simulations show even 
the presence of oscillatory regimes [3-IO]. Thirdly, in 
the case of a horizontal temperature gradient, the 
instability threshold depends strongly on the Prandtl 
number while it is independent of this parameter when 
a vertical temperature difference is acting [I]. A linear 
analysis of instabilities in thermocapillary liquid lay- 
ers submitted to a horizontal temperature gradient 
was performed by Smith and Davis [6]. They identify 
two mechanisms of instabilities : the first is occurring 
as a consequence of the energetic balance between heat 
conduction and heat convection at the free surface, 
the second is related to the mechanical transfer of 
momentum from the basic state to the disturbance 

through the Reynolds stress in the layer; this second 
effect is particularly important in the presence of free 
surface deformations and occurs principally at small 
Prandtl numbers (Pr < IO-‘) [7]. Smith and Davis [6] 
did not examine the influence of buoyancy. Thermo- 
gravitational effects in layers submitted to a hori- 
zontal temperature gradient were studied by Hart [1 I], 
Laure and Roux [5, 121 for Prandtl numbers lower 
than 1. In the particular case of two adiabatic hori- 
zontal surfaces. these authors found an asymptotic 
value for the critical Rayleigh number at Pr = 0.40. 

But they did not look for an eventual bifurcation point 
situated beyond Pr = 0.40. To our knowledge, the 
only theoretical contribution to the study of coupled 
thermocapillarity and buoyancy instabilities in layers 
submitted to a horizontal temperature gradient is a 
paper by Ben Hadid ef al. [8]. These authors were 
essentially interested by the study of liquid metals for 
which the Prandtl numbers are very small (Pr < 

5 x IO-‘). Moreover, they used different thermal 
boundary conditions for the basic and the disturbed 
states: the free surface was adiabatic for the basic 
state and perfectly heat conducting for disturbances. 

The present paper concerns the problem of coupled 
thermocapillary and buoyancy effects in liquids with 
Prandtl number values ranging from IO-‘to 10. These 
Prandtl numbers correspond to current fluids: for 
example Prcacetonc, = 4.24 and Pr,,n,cr, = 7. A general 
3D mathematical formulation is used. After recalling 
the relevant governing balance equations and bound- 
ary conditions in Section 2, the velocity and tem- 
perature profiles of the basic state are established in 
Section 3 : the imposed temperature gradient is general 
in the sense it has simultaneously a horizontal and a 
vertical component. In Section 4, a linear stability 
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NOMENCLATURE 

b dimensionless heat exchange coefficient CI, /3 disturbance wave numbers in X-, 
B Biot number, h d K- ’ y-axis 

CP specific heat PT characteristic temperature gradient 

ci physical constants (i = l-4) Y rate of change of surface tension with 
c phase speed temperature 
C physical constant 8, partial time derivative operator 
d height of the fluid layer ar.x.r partial space derivative with respect to x, 
D non-dimensional z-coordinate y and z 

derivative, d/dz 
T 

thermal diffusivity 
Gr Grashof number, gtl& d4v- ’ complex eigenvalue 
I1 heat exchange coefficient P dynamic viscosity 
k overall wave number kinematic viscosity 
K thermal conductivity b nabla operator 
M mass flux P density 
Ma Marangoni number, surface tension 

&d’K- ‘v- ‘/I; ’ i 1.2 complex differential operators 

P dimensionless pressure Y direction of disturbance propagation. 
Pf Prandtl number, VK- ’ 

Q/r.,. multiplicative factors of characteristic 
temperature gradient Subscripts 

Ra Rayleigh number, gc&-d’v- ‘K- ’ basic state quantity 
RC Reynolds number, y/lrd2v-‘p, ’ 0 reference quantity 
s complex stability parameter I imaginary part 
t dimensionless time I lower rigid surface 
T dimensionless temperature R real part 
u dimensionless velocity field U free upper surface. 
U, u, w dimensionless X-, y-, z-velocity 

components 
x, J, z dimensionless space coordinates. Superscripts 

m surrounding quantity 
, perturbation variable 

Greek symbols * perturbation amplitude 
UT coefficient of volumic expansion C critical value. 

analysis is presented for the particular case of a hori- 
zontally imposed temperature gradient at the upper 
surface of a layer enclosed between two adiabatically 
isolated planes. The flow is considered as being in a 
slot which induces a velocity profile usually referred 
as ‘return flow’ [4-6, 11, 131. Final comments and 
comparison with other works are found in Section 5. 

2. MATHEMATICAL FORMULATION 

Consider a fluid layer of infinite horizontal extent 
confined between a rigid plane z = 0 and a free surface 
whose height is located at z = d. Since the deflection 
of the free surface is generally small [6, 7, 9, 131, 
we assume in this note that the free surface is flat. 
Cartesian coordinates are used with the origin at the 
rigid lower plane and the x, y axis oriented in the 
directions given by Fig. 1. 

The fluid is Newtonian and incompressible with 
density given by 

P = po[l --cw,U- To)1 (1) 

where p. is the density at temperature To and tlT the 
constant coefficient of volumic expansion. Bous- 
sinesq’s approximation is taken for granted; accord- 
ingly the dynamic viscosity cc, the specific heat C,, and 
the thermal conductivity K are constant while the rate 
of production of heat by internal friction is neglected. 

The free upper surface is submitted to a surface 
tension 0, whose equation of state is given by 

cr = a,,-y(T- To) (2) 

Y Rigid plant 

FIG. 1. The geometrical configuration: the curve gives the 
basic velocity profile, referred to as the return flow solution. 
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where (rO is the surface tension at temperature To, y  
the constant rate of change of surface tension with 
temperature (11 is positive for most current liquids). 

For convenience, the variables are expressed in 
dimensionless form. Distances are scaled by the thick- 
ness of the layer n; the velocity vector u = (11. ;:, it!), 
time I, pressure p. temperature difference and surface 
tension IJ are scaled by IX- ‘, tid’, wp,,ct- ‘, lj7.d and 
cr, respectively, where ti = KC; ‘pi ’ is the diffusivity, 
I’ E /lpi ’ the kinematic viscosity and ljT a charac- 
teristic temperature gradient whose physical meaning 
will be specified later when the boundary conditions 
are established. The following dimensionless numbers 
are also introduced : 

Pr is the Prandtl number, Ra the Rayleigh number, 
Mu the Marangoni number and B the Biot number, 
with 11 the thermal surface conductance. Some authors 
refs. [5, 7-121 use different dimensionless numbers as 
Reynolds and Grashof numbers defined respectively 
by 

Ret MaPI--‘, Gr= RuPr-‘. 

The Rayleigh number is representative of the buoy- 
ancy effect while the Marangoni number describes 
more particularly the thermocapillarity effects, Gra- 
shof and Reynolds numbers are representative of the 
same effects respectively, but are divided by the 
Prandtl number. Within Boussinesq’s approximation, 
the governing dimensionless equations are : 

the continuity equation : 

v-u=0 

the Navier-Stokes equation : 

(3) 

&u+u*Vu = Pr(-Vp+RaTe,+V’u) (4) 

the energy equation : 

a,T+u*VT= V’T. (5) 

V = (a,, a!, a,) is the nabla operator, a, and d,, $, d, 
stand for the partial time derivative and the partial 
space derivatives with respect to s, y, 5 respectively ; 
e, is the unit vector in z-direction. 

The fluid layer is submitted to a temperature gradi- 
ent with an arbitrary orientation with regard to the 
fluid layer. Let us denote by Q,J,.K and Q&K the 
horizontal-.u and vertical-z components of the 
imposed heat flux, written in dimensional form ; Q,, 
and Qt. are multiplicative dimensionless factors while 
p7. is the common factor appearing in both com- 
ponents of the imposed heat flux. In order that the 
Rayleigh and Marangoni numbers correspond to the 
classical ones in the cases of pure horizontally or 
vertically imposed gradients, Q,, and Q. are nor- 
malized by 

(Q,?+Q;)' ' = 1. 

The boundary conditions are : 

On the rigid plane z = 0 : 

(6) 

1, = L’ = )(‘ = 0 (7) 

d:T= B,(T-T,‘)+Q,. (8) 

Equation (7) expresses the no-slip condition while 
equation (8) is the general heat transfer condition: 
subscript ‘I’ refers to the lower plane, B, is the Biot 
heat transfer coefficient, and T’ is the temperature of 
the external surroundings. 

On the free top plane : = I : 

i?,u = - Mad,T, ?,rl = - Mu?,.T (9) 

II’ = 0 (10) 

-r’,T= B,,(T-T,;)+Q,. (11) 

Equations (9) and (IO) arc the boundary conditions 
for a non-deformable flat surface with a temperaturc- 
dependent surface tension. In equation (I I) sub- 
script ‘u’ refers to the upper free surface. It is noted 
that Q,, and Q, are arbitrary parameters that can bc 
given any value between 0 and I 

3. THE BASIC STATE 

As soon as the imposed temperature gradient has 
non-zero horizontal component, i.e. Q,, # 0, a con- 
vective motion sets in. In contrast with the classical 
Btnard-Marangoni problem, with a vertical com- 
ponent temperature gradient, the basic steady state is 
not a state of rest. 

Because of the hypothesis of infinite horizontal 
extent the only non-zero component of velocity is II 
which, by continuity, depends only on the :-coor- 
dinate, refs. [2,4-6. I I, 131. After eliminating the pres- 
sure, the momentum and energy equations in the 
steady state are : 

c:;;;u = Rud,T (12) - - 

1’3, T = i;,,r. (13) - 

This situation is referred to as the ‘basic state’ and the 
corresponding variables are underlined. 

The relevant boundary conditions are : 

at:=0 

u=o (14) 

a;T = B, (r- T;) + Q,. (15) 

at-i= I 

a+ = - Mua,T (16) - 

-a,T= B,(T-T;)+Q,.. (17) 

Finally, the steady state must satisfy the global 
condition : 
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a.,T= -Q/v (18) - 

Moreover T; -T;’ = Q,. so that QV must be viewed 
as an external vertical heat flux which is superimposed 
on the vertical heat flux resulting from the application 
of the horizontal temperature gradient. 

The conservation of mass can be expressed by 
means of the condition 

I I 
M= 

ss 
udJ,d: VX (19) 

0 0 

where M is the mass of liquid crossing a unit square 
area perpendicular to the .u-axis per unit time. In 
the particular case of a zero-mass flux (M = 0), the 
solution corresponds to a Hadley circulation in a slot 
for which the assumptions cl = IV = 0 are not verified 
near the vertical walls. Nevertheless, it was shown by 
Sen and Davis [ 131 that the relevant region wherein a 
return motion is observed has a dimension of the 
order 0(&l) with 1 defined as the slot length. Since 
the present analysis concerns only shallow cavities 
for which d/l << 1, our asymptotic solution will tend 
towards the exact solution for vanishing d/l. 

The solutions of the basic velocity and temperature 
profiles are given by : 

u = -Q,,Ra?/3! + C,z’/2!-C2z, (20) - 

T= Q,,{Q,,RarS/S!-CIZ4/4!+C2i3/3! - 

+C,[l-b,(l-z)](b,-b,b,+b,)-I}-Q,.z-Q,,x 
(21) 

under the conditions that 

T;l- = -Q,,x, T; = -Q,,x-Q,.. (22) 

The particular choice of equation (22) for the external 
surroundings temperatures is necessary to obtain a 
steady solution. The undefined quantities C,, C2, C3, 
b, and b, appearing in equations (20) and (21) are 
given by 

C, = 3/2Q,,Ma+5/8Q,,Ra-3M (23) 

C2 = 1/2Q,,Ma+ 1/8Q,,Ra-3M (24) 

Cx = -b,Q,,(l/48Mu+ 1/320Ra)+M(l-5/8b,) (25) 

b, = &(I +B,)-’ (26) 

b, = B,(I+B,)-‘. (27) 

The use of parameter b rather than Biot’s number B 
is justified by the property that the domain of vari- 
ation of b is [0, I] for any positive value of B: b = 0 
corresponds to an adiabatic boundary condition and 
b = I to a perfectly heat conduction surface. 

In the case b, = b, = 0, equations (12) and (13) 
admit a solution only for a zero-mass flux M since 
two adiabatic surfaces prevent any heat dissipation 
through these surfaces. Under these conditions, the 
temperature profile equation (21) simplifies as 

_T(b, = b, = 0; M = 0) = Q,,(Q,,Raz’/5! 

-C,z4/4!+C2z3/3!)-Q,.z-Qhx+C4 (28) 

wherein C, is an arbitrary constant whose value is not 
relevant because, as will be shown in next section, T - 
will appear only in the form of derivatives. 

4. A LINEAR PERTURBATION ANALYSIS 

Our aim is to study the stability of the basic state 
under infinitesimally small disturbances. The general 
solution of the problem will be written as 

(u,v,,~~,p,T)=(u,v,w,p,T)+(u’,c~’,w’,p’,T’) (29) 

wherein primes denote perturbations. Introducing 
equation (4.1) in equations (2.3-2.5) and dropping 
non-linear terms in the perturbations leads to : 

a,uf+a,.v'+a,w' = 0 (30) 

a,u'+Ua,yu'+da,u = Pr(-a,yp’+v’u’) (31) 

a,d +gTv' = Pr( - a,,p’+v2~f) (32) 

a,lY’+ua,lY’ = Pr(-a,p’+V2w’+RaT’) (33) 

a,T'+ua,~+u'a,T+,v'T= VET (34) - - 

with the boundary conditions 

at 0 = = 

u’ = 0’ = w’ = 0 (35) 

-(I -b,)&T’+b,T’ = 0 (36) 

atz= I 

10’ = 0 (37) 

a+’ = --Ma a,7- (38) 

azvf = -Maa,.T (39) 

(I -b,)d,T’+b,T’ = 0. (40) 

According to the normal mode technique, we seek 
solutions of the form : 

(u’, v’, w’,p’, T’) = 

[u*(z). v*(z), w*(z),p*(z), T*(z)] ei(?rr+py+“) (41) 

where an asterisk refers to the amplitudes and s is the 
complex stability parameter 

s = sR + is, (42) 

wherein S, measures the growth rate of the disturb- 
ance, CL and /3 are disturbance wave numbers in the x- 
and y-axis, respectively ; CI = 0 corresponds to longi- 
tudinal rolls with axes aligned in the direction the bulk 
flow, /3 = 0 to transverse rolls with axes normal to the 
flow. The direction of propagation of the disturbance 
with regard to the x-axis is measured by means of 
angle Y defined as 
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Y = tan - ’ (/I/G(). (43) 

The corresponding phase speed is given by 

c = s,k-’ (44 

where k stands for 
/i = (,?+fl2)1,?, (45) 

At marginal stability, the growth rate s, of the pcr- 
turbation is zero, so that s = sR. Substitution of equa- 
tion (41) in equations (30)-(40) results in the fol- 
lowing differential equations for the disturbance 
amplitudes : 

Dw* + iau* + i/h* = 0 (46) 

CJ , u* = iaPrp* + w* Du (47) 

@,c* = ipPrp* (48) 

@, IV* = Pr Dp* - Pr Ra T* (49) 

‘D> T* = II* 5, T+ II** 2; T (50) - - 

where D stands for D = d/d= while Q,, and Q2 are 
given by 

Q,, = Pr(D’-k’)-iccu+i.s 

a)2 E D’-k’-iiru+is. 

After elimination of the pressure and the p*-com- 
ponent of the velocity from the continuity equation 
(46), it is found that: 

@,(D’-k’)w* = - iaD( Duw*) + k’ Pr Ru T* (51) - 

@,(k%*-ictDw*) = ~‘w*Du (52) - 

a2 T* = u* S,T+ IV* S. T (53) 

while the corresponding boundary conditions are 

at:=0 

u* = II-* = DII’* = 0; (I -b,)DT* = b, T*, (54) 

at== I 

Du*+iaMa T* = w* = D’w*+iaDtr* 

+MaB’T* = 0, 

(I -b,)DT* = b,T*. (55) 

This set of equations (5l)-(55) determines a com- 
plex eigenvalue problem for the complex value 2, 
defined either by 

1 = Ma+& (56) 

or 

i = Rafis. (57) 

A particular choice of 1, for instance equation (56) 
leads to two real characteristic equations from which 
it is possible to express Mu and s in terms of the 
remaining parameters 

Mrr = Ma(cc, f12, Ra, Pr, b,, b,) (58) 

s = .s(x/l’. RN. Pr.h,.h,,). (59) 

For given values of Rrr. Pr, h,. h,,, thccritical Maran- 
goni number Ma’ is obtained by minimizing equation 
(58) with respect to both Y and /j : 

Mu’ = min,,,,MN(rl, 8’. RN. Pr.h,,. /I,,) 

= hfd(xc. /f’, Ro. Pr. b,, h,, ). (60) 

Observe that Mrr and s depend on /j only through its 
square value /j’, because of the flow symmetry with 
regard to the s-axis. From this observation it follows 
that /Ye = 0 is a privileged value for /I. 

5. NUMERICAL PROCEDURE 

To solve the cigenvalue problem equations (5 I )-( 55) 
which consists in finding the eigcnvalues i = Mo+i.r 
(or i = RN+ is), WC convert it into an inhomogencous 
boundary value problem. We impost a priori a i-value 
and introduce a normalization condition. sclcctcd as 
T*(l) = I, which allows us to relax a homogcncous 
boundary condition, for instance the condition 
IV*(O) = 0. Dctcrmining the solution i of the cigen- 
value problem is equivalent to searching the i-value 
of the boundary value problem under the condition 
that IV*(O) = 0 is satisfied. The boundary value prob- 
lem is solved with the DOXBF NAG Fortran Library 
Routine using a finite-difference method with deferred 
correction ; a general Newton-Raphson algorithm 
gives the i-value. Finally the critical i,-value is found 
by minimizing with respect to the wave numbers 2 
and 8. These routines were performed on an IBM 
3090 200/E vectorial computer. It should be noticed 
that CPU times increases rapidly as the Rayleigh 
and/or the Prandtl numbers become larger and larger. 

6. RESULTS 

The numerical results have been obtained for a 
simplified version of the model established in Section 
4. Here, we consider a 3-dimensional thin fluid layer 
of infinite horizontal extent bounded below by an 
adiabatically isolated rigid plane and above by an 
adiabatically isolated flat free surface. The fluid layer 
is subdued to a horizontal gradient of temperature 
along the upper surface: no vertical temperature 
gradient is imposed. In addition, a zero-mass flux 
M = 0 through any vertical section is maintained. 
Under these conditions, the basic velocity protilc cor- 
responds to the so-called return flow solution given 
by equation (20) and represented on Fig. I. The range 
of variation of the Prandtl number is selected as [IO- ‘, 
IO] and positive or zero Marangoni numbers are con- 
sidered. To summarize, 

b, = b, = 0 

Pr = 0, Q,, = 1 

M=O 

(61) 

(62) 

(63) 
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Rat lo3 

FIG. 2. The critical Rayleigh number Ra’ vs Pr in the pure 
thermogravitational case ; the value Pr = 0.4 corresponds to 
the bifurcation point; the value Pr = 2.6 corresponds to 
the asymptotic value of Ra’ (Ma = 0 ; b. = b, = 0 ; Q,, = 1; 

Q, = 0 ; return flow). 

PrE[10e2, lo] 

Ma>O. 

(64) 

(65) 

6.1. Pure buoyancy instability (Ma = 0) 
It is shown that for the return flow the thermo- 

convective instabilities are taking the form of pro- 
pagating hydrothermal waves : no stationary insta- 
bilities have been displayed. Figures 2 and 3 give the 
critical Rayleigh and Grashof numbers for Prandtl 
numbers greater than lo-* up to 10. Two distinct 
curves which intersect at Pr = 0.4 are exhibited. The 

15 000 

10 000 

GP 

5000 

0 

first one, corresponding to 4 x 10M3 < Pr ,< 0.4, 
reproduces the results found by Laure and Roux [5, 
121. On the graph Ra’ vs Pr (Fig. 2), the curve is 
monotonously increasing with Prandtl number while 
on the graph Gr’-Pr (Fig. 3), a minimum is observed 
at about Pr cz 0.2. The instability threshold of this 
first mode tends asymptotically to infinity for Pr + 
0.41. On Fig. 4, we have reported the angle of propa- 
gation of the disturbances vs the Prandtl number. It 
is shown that for Pr -+ 0.41. longitudinal rolls cor- 
responding to Y = 90”, i.e. CI = 0, are predicted. This 
confirms previous results by Hart [l l] who found that 
longitudinal rolls are more unstable than transverse 
ones. 

Figure 5 shows that, after a slow increase, the criti- 
cal wave number k, becomes smaller and smaller as 
Pr tends towards the asymptotic value Pr = 0.41. 
From the other side, the phase speed increases mon- 
otonously with Pr (Fig. 6). Physically, the instability 
takes place with larger and larger rolls travelling at 
greater and greater velocity. 

To our knowledge, the instability problem for 
Pr > 0.4, in adiabatically bounded layers, and for 
Pr > 1 under other boundary conditions, has not been 
treated earlier. Our calculations exhibit the presence 
of a second instability curve which occurs for 
0.4 < Pr < 2.6, with an asymptotic behaviour at 
Pr x 2.6. The angle of propagation Y for this second 
mode of instability decreases rapidly from 63” to O”, 
which corresponds to transverse rolls (/I = 0) (Fig. 4). 
The wave number, as well as the phase speed, tends 
to infinity in the neighborhood of the asymptotic value 
Pr = 2.6. Physically, the instability takes place with 
smaller and smaller rolls travelling at greater and 
greater speed. 

90 

Pr Pr 

FIG. 3. The critical Grashof number Gr’ vs Pr in the pure FIG. 4. Angle of propagation ‘I” of the disturbance vs Pr in 
thermogravitational case ; the vertical dashed line at Pr = 0.4 the pure thermogravitational case ; the vertical dashed lines 
corresponds to the bifurcation point; the vertical dashed at Pr = 0.4 and 2.6 correspond to the bifurcation point and 
line at Pr = 2.6 corresponds to the asymptotic value of Gr’ the asymptotic value of Rd respectively (Ma = 0; 

(Ma=O;b,=b,=O;Q,,=l;Q,=O;retumflow). b,=b,=O;Q,,= l;Q.=O;retumflow). 
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PI 

FIG. 5. The critical wavenumber k’ vs Pr in the pure ther- 
mogravitational case (Ma = 0 ; 6, = b, = 0; Qb = I ; Qc = 0 ; 

return flow). 

For Pr > 2.6, no critical Rayleigh number is found. 
To check this result, an independent numerical experi- 
ence was performed. A bidimensional finite-difference 
program was used in the case of a layer with Pr = 7 
confined in a rectangular box of aspect ratio 
A( = I/d) = 4, with adiabatically isolated horizontal 
boundaries and perfectly conducting vertical walls : 
the calculations were performed for Ra values up to 
10’. The result was edifying: no transverse roll was 
exhibited confirming that the situation is uncon- 
ditionally stable. It should also be noticed that because 
of the 2-dimensionality of the numerical scheme, only 
transverse rolls are allowable. 

cc 

104 

10’ 

102 

101 

100 

FIG. 6. The critical phase speed cc vs Pr in the pure ther- 
mogravitational case (Mu = 0 ; b. = b, = 0 ; Qh = I ; Q. = 0 ; 

return flow). 

Figure 2 can also be exploited to show the influence 
of the viscosity on the stability of the basic state. 
Consider two fluids with the same thickness, say 
fluid”’ and fluid”‘, whose physical parameters are 
identical except for the viscosity and suppose 
/&I’ < $21, so that Pr”’ < Pr”‘. From Fig. 2, it is 
found that Ra”” < Rat2”, from which follows that 
B (:” < $,?’ : this result is in agreement with the phys- 
ically intuitive conclusion that the more viscous is the 
fluid, the more stable is the flow. 

Figure 3 gives some hints on the influence of ther- 
mal conductivity on the stability of the basic state. 
Like above, consider two identical fluids with the same 
thickness, except for thermal conductivity, and sup- 
pose K”’ > K”‘. I f  the corresponding Prandtl num- 
bers are in the range 4x 10m3 < Pr”’ < PI”’ < 0.2, 
it is observed on Fig. 3 that /I’:” > /I(Tz”; it can thus 
be said that stability is increased when the heat con- 
ductivity becomes larger and larger. For Prandtl 
numbers in the range 0.2 < Pr”’ < Pr”’ < 2.6, by 
decreasing the conductivity one reinforces the 
stability. It follows from the results reported on Fig. 
3 that for a given set p, C, and p,,, there exists a critical 
conductivity given by K, = 5&,p,’ at which the 
basic state is the most unstable. 

In summary, it has been shown that buoyancy insta- 
bilities appear only under the form of travelling rolls 
for Prandtl numbers smaller than 2.6 ; above this limit, 
our results indicate that the flow is stable with respect 
to buoyancy disturbances. The angle of propagation, 
the wavelength and the perturbation phase speed 
depend strongly on the Prandtl number. The per- 
turbation can appear either under the form of nearly 
longitudinal rolls (a z 0) for Pr < 0.4 or under the 
form of transverse rolls (p = 0) for Pr 2 2, either with 
relatively long wavelengths (for Pr < 0.4) or short 
wavelengths (for Pr > 0.4) with large phase speed (at 
Pr z 2.6) or small phase speed (at Pr z 10-I). This 
wide diversity of results leads to the impossibility to 
draw a general conclusion on the behaviour of travel- 
ling disturbances when buoyancy is the single motor 
of instability. 

6.2. Coupled buoyancy and thermocapillary (Ma # 0, 
Ra # 0) 

We now discuss the coupling of the buoyancy and 
surface-tension driven instabilities. The pure Maran- 
goni problem, without buoyancy effect, was treated 
by Smith and Davis [6] and therefore will not be 
repeated here. 

The present analysis considers five different values 
of the Prandtl number, namely Pr = 10-2, IO-‘, I, 
3 and 7. The instability thresholds are represented on 
Rayleigh-Marangoni and Grashof-Reynolds graphs 
as they bring interesting complementary infor- 
mations. The other results (phase speed, wave 
number, angle of propagation) will be represented as 
a function of the Rayleigh number. 

The results display three kinds of behaviour accord- 
ing to the values taken by the Prandtl number: the 
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FIG. 7. The critical Marangoni number Ma’ vs the critical 
Rayleigh number Ro’ at five different Prandtl numbers 
(Pr = IO-‘, IO-‘. I, 3. 7). The curve Pr = 7 is composed of 
two distinct solutions (a) and (b). which intersect at 

Ro’ = 365 (h, = h, = 0; Q,, = I ; Q, = 0; return flow). 

first one. 4x IO-’ < Pr < 0.4, will be referred to 
as the ‘a-family’; the second one, 0.4 & Pr < 2.6 as 
the ‘b-family’ and the third one, Pr > 2.6, as the ‘c- 
family’. 

Figures 7 and 8 give the critical values in both 
the Rd-Md and Gr’-Ret representations. It must be 
realized that both representations describe the same 
physical situation, but that in some circumstances the 
effects are better described on one graph rather than 
on the other. 

R.?= . 

600 

2500 5000 7500 

GrC 

FIG. 8. The critical Reynolds number Re’ vs the critical 
Grashof number Gr’ at five different Prandtl numbers 
(Pr = IO-‘, IO-‘, I, 3,7). In this linear scale, only the second 
part (b) of the curve Pr = 7 is represented. The straight line 
Rc = C Gr gives the couple of values Re-Gr corresponding 
to a given fluid with a given depth (b, = b, = 0; Q,, = I ; 

Q, = 0; return flow). 

Concerning the a-family (curves Pr = IO-’ and 
IO-‘), it is seen that at a fixed value of Pr, Mu’ (Re’) 
decreases monotonously with Ra’ (Grc) indicating 
that both buoyancy and thermocapillarity effects are 
tightly coupled. It follows from Fig. 8 that the relation 
Re’ =f(Gr’) can be approximated by the linear law 
Gr’/Gr’,+Re’/Re’, = I or, after simplification by Pr, 
Mu’/Ma’,+Ra’/Ra’, = I ; the quantities Mui (Re’,) 
and Ra’, (Gr\) are the Mu’ (Re’) and Ru’ (Gr’) values 
corresponding to pure surface tension driven and pure 
buoyancy instability respectively. This result shows 
that at small Pr values. buoyancy and capillary effects 
are strongly-tied. Note that this relation is reminiscent 
of the straight line found by Nield [I] for a fluid, at 
rest in the basic state, heated from below. 

Stability can be discussed from two different points 
of view : either by analysing the effects of variation of 
a dimensionless parameter on the behaviour of other 
characteristic numbers, or by examining the stabil- 
izing effects of a relevant physical parameter, like the 
imposed temperature gradient. As illustration of the 
first point of view, it is noted that an increase of Pr 
raises the Critical values Mu’ and Ru’ while an increase 
of Pr has the opposite effect on the critical Gr’ and 
Ret numbers, which decrease with Pr. The most inter- 
esting physical insight provided by the second point 
of view will be discussed in Section 6.3. 

The curves describing the a-family (Pr = IO- ’ and 
IO-‘) and the b-family (Pr = I) intersect the coor- 
dinates axis Ru’ = 0 (respectively Gr’ = 0 and 
Re’ = 0) : the differences between these two families 
is that the curves of the b-family pass through a 
maximum. The c-family curves are characterized by 
unconditional stability in the case of pure buoyancy 
since they do not cut the Ru’ (respectively, Gr’) axis. 
The curves for Pr = 3 and 7 admit two extrema with 
a weak dependence of Mu’ vs Rut (respectively, 
ReC vs Grc). In the last parts of these curves (Ru’ > 
7x IO3 (Gr’> 103) for Pr = 7 and Ru’> 5x IO4 
(Gr’ > I .67 x 104) for Pr = 3, Mu’ (Re’) increases 
monotonously with Ra’ (Gr’) with a weak dependence 
of Mu’ vs Ru’, indicating that buoyancy and ther- 
mocapillarity are loosely tied. It is also worth noticing 
that the curve Pr = 7 exhibits a bifurcation at 
Ru’ = 365 (Gr’ = 52). 

Figures 9-l I represent respectively the wave 
number, the angle of propagation and the phase speed 
of the perturbation vs the Rayleigh number. Con- 
cerning the a-family it is noted that the wave number 
and phase speed are particularly unaffected by the 
presence of the buoyancy effect, while the direction of 
propagation of rolls remains close to that of the basic 
flow. In contrast, in the case of the c-family, the trav- 
elling rolls become transverse from large Ru values; 
a substantial increase of the wave number and phase 
speed is also observed after that Y” is equal to zero, 
i.e. for transverse rolls. In the particular case Pr = 7 
and Ru = 365, at which bifurcation occurs, the rolls 
undergo a radical change in their behaviour, this is 
particularly true for the angle of propagation. Finally, 
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FIG. 9. Critical wavenumber k’ vs critical Rayleigh number FIG. I I. Critical phase speed cc vs critical Rayleigh number 
Rd at five different Prandtl numbers (Pr = IO-‘, IO-‘. I, 3, Ra’ at five different Prandtl numbers (Pr = IO-‘, IO-‘, I, 3. 

7) (b, = b, = 0; Q,, = I ; Q. = 0; return flow). 7)(b.=b,=O;Q,,=- l:Q,.=O;returnRow). 

the trend of the b-family curves is seen to be inter- 
mediate between these of the a- and c-families. 

6.3. Further comments 
For a given fluid with given depth, the only physical 

parameter under control is the horizontal temperature 
gradient /3r. The information obtained from the vari- 
ations of some quantities like Ma, Gr, . in terms of 
the Prandtl number are not directly useful from a 
practical point of view. Indeed, for a given value of 
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FIG. 10. Angle of propagation ‘PC of the disturbance vs 
critical Rayleigh number, Ra’ at five different Prandtl num- 
bers (Pr = IO-‘, lo- ‘, 1, 3, 7) ; the travelling rolls are trans- 
verse at Pr = 3 for Rd > IO4 and at Pr = 7 for 
335<Rd<365 and Rd>4x103 (b,=b,=O; Q,,=l; 

Q,, = 0 ; return flow). 

Pr, infinite values of the couple p (viscosity)-h- (heat 
diffusivity) are allowable: moreover. we need the 
knowledge of p and K to determine the critical value 
of the temperature gradient since Ma’, Ra’, Gr’ and 
Re’ depend explicitly on them. 

After elimination of /?r between the definitions of 
Ma and Ra, one obtains a linear relation Ma’ = C 
Ra’ between Ma’ and Ra’ with C given by 

c = yp; ‘cc; ‘y- ‘d- 2. 

The slope of the straight line Ma’ = C Ra’ is fixed for 
a given fluid with a given depth. Of course a similar 
linear relation Re’ = C Gr’ is obtained from the Gr 
and Re definitions. The intersection of this straight 
line with the Ma’-Ra’ (or Re’-Gr’) curves gives the 
Mu’-Ra’ (respectively, the Re’-Gr’) values cor- 
responding to the instability thresholds for a given 
fluid at a given depth. The corresponding critical tem- 
perature gradient /Jr is then directly derived from the 
very definition of the various parameters. 

Consider now two fluid layers of same depth with 
the same physical constants except for the viscosity ; 
assume that p(‘l < p(2) from which it follows that 
Pr”’ < Pr(l). According to Fig. 7, it is seen that the 
Marangoni number as well as the Rayleigh number 
for the fluid 1 is smaller than for fluid 2, from which 
is directly inferred that 

It is thus concluded that the more viscous the fluid, 
the more stable the flow; the viscosity thus plays a 
stabilizing role whatever the values of the physical 
properties of the fluid. 

To study the role of the thermal conduction upon 
the onset of instability. let us examine Fig. 8. We still 
consider two fluids differing only by their thermal 
conductivity and suppose that K”’ > K”‘. We 
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observe on Fig. 8 that for large C values, which cor- 
respond to very thin layers or a microgravity environ- 
ment, one has 

or equivalently 

This means that for large C-values, the thermal con- 
ductivity is stabilizing. In the opposite case of very 
small values of C, which corresponds to thick layers 
wherein buoyancy effects are dominant, we recover 
the conclusions of Section 6. I, accordingly stability is 
reinforced when the heat conductivity is increased. 
However, for intermediate thicknesses, no general rule 
about the effect of heat conductivity on the onset of 
instability can be formulated. 

Figure IO shows that at very small Prandtl numbers, 
the preferred mode of propagation of the hydro- 
thermal waves is nearly longitudinal as Y’ is close to 
90 When Pr is increased (Pr > 3) a tendency towards 
transverse rolls is observed. For these values of Pr. 

pure transverse rolls (‘UC = 0) are predicted above a 
critical value of the Rayleigh number: this value 
diminishes when Pr increases. In the particular case 
of pure Marangoni effect (Ra = 0), oblique hydro- 
thermal waves are found with a trend towards longi- 
tudinal waves at small values of Pr: this result is in 
agreement with earlier calculations by Smith and 
Davis [6]. It is also seen on Fig. IO that for Pr > I 

and microgravity conditions (Ra = 0), instability 
takes place as rolls propagating in an oblique direction 
with respect to the flow; in contrast on earth, where 
buoyancy effects are dominant (large Ra-values), the 
preferred mode of propagation is essentially trans- 
verse rolls. 

Experiments for coupled buoyancy and ther- 
mocapillary flows submitted to a horizontal tem- 
perature gradient in rectangular boxes were per- 
formed by Villers and Platten [4]. These authors 
worked with acetone whose Prandtl number is 4.24. 
They observed stationary and oscillatory regimes 
according to the relative values of the Ru and Mu 
numbers. We did not calculate the curve for Pr = 4.24 

as its behaviour is very similar to these obtained for 
Pr = 3 and 7, and because a quantitative comparison 
with experimental results is not significative, as 
explained below. For a given Rayleigh number, it is 
observed that the ratio between the theoretical and 
experimental Marangoni numbers take values 
between 10 and 20. This relatively large difference 
may, from one side, be explained by the presence of 
the vertical rolls which play a stabilizing role, and 
which were observed in experiments due to the pres- 
ence of the lateral walls ; moreover the thermal bound- 
ary conditions imposed at the horizontal surfaces are 
different in Villers-Platten’s experiments and in our 
theoretical approach ; finally, it is clear that the exper- 
imental determination of the critical point is a very 
delicate task and may be a source of experimental 

errors. Despite differences between theoretical and 
experimental predictions, it must be emphasized that 
experiments confirm the presence of travelling waves 
and the general trend that, at large RN’-values, Mu’ is 
increasing with Rd. Clearly, more experimental data 
on boxes with various aspect ratios will be welcomed. 

7. SUMMARY AND FINAL REMARKS 

The aim of this work was to examine the problem 
of coupled buoyancy and thermocapillary driven con- 
vection in thin fluid layers of lateral infinite extent 
submitted to a horizontal temperature gradient. In 
contrast with the classical BCnard-Marangoni con- 
vection in a layer heated from below, the basic ref- 
erence state is no longer a quiescent state but the 
imposed temperature gradient generates instan- 
taneously a fluid flow: in the present work the result- 
ing basic velocity profile has been supposed to take 
the form of a return flow solution. The linear stability 
of the basic flow is analysed by superimposing a three- 
dimensional disturbance and applying the normal 
mode technique. It was shown that the resulting dis- 
turbances take the form of rolls propagating generally 
in an oblique direction with regard to the basic flow. 
Steady perturbations were not predicted. 

The main results and original contributions of the 
present work can be summarized as follows : 

(I) the basic flow equations have been formulated 
under rather general conditions with an imposed tem- 
perature gradient arbitrarily oriented. Up to now, 
either vertical or horizontal temperature gradients 
were considered ; 

(2) our linear stability analysis is complementary 
to recent contributions by Smith and Davis [6] and 
Ben Hadid ef al. [8]. The first authors restrict their 
analysis to the pure Marangoni problem while the 
second authors consider coupled buoyancy and sur- 
face-tensions driven flows : however, they restrict their 
analysis to low Prandtl number (Pr < I); moreover, 
Ben Hadid et al. [8] use different boundary conditions 
for the basic and the perturbated flows and therefore 
their results cannot be compared either with ref. [6] 
or with the present ones ; 

(3) in pure thermocapillary convection (Ra = 0), 

our results are in excellent quantitative agreement 
with Smith and Davis [6]. In pure buoyancy-driven 
flow (Ma = 0) our results are identical to those of 
Laure and Roux [12] who explore the Pr-region be- 
tween 4 x 10m3 and 0.4. The case of coupled buoy- 
ancy and thermocapillary effects was treated by Ben 
Hadid et al. [8, IO] but only for small values of the 
Prandtl number. However, as explained earlier, their 
results are not comparable with ours because of their 
particular choice of boundary conditions ; 

(4) it was found that the behaviour of the system 
is widely dependent on the Pr-values. This has motiv- 
ated the introduction of three different Pr-families: 
the a-family corresponds to very small values of Pr 
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